تعرف الرياضيات بأنها دراسة القياس و الحساب والهندسة. هذا بالإضافة إلى المفاهيم الحديثة نسبيا و منها البنية، الفضاء أو الفراغ، و التغير و الأبعاد. و بشكل عام قد يعرفها البعض على أنها دراسة البنى المجردة باستخدام المنطق و البراهين الرياضية و التدوين الرياضي. و بشكل أكثر عمومية، قد تعرف الرياضيات أيضا على أنها دراسة الأعداد و أنماطها.
و لقد نشأت الرياضيات بقيام الإنسان بقياس ما يشاهده من ظواهر الطبيعة بناء على فطرة و خاصية في الإنسان ألا و هي اهتمامه بقياس كل ما حوله إلى جانب احتياجاته العملية فهكذا كان هناك ضرورة لقياس قسمة المقوتة (الطعام) بين أفراد العائلة و قياس الوقت و الفصول و المحاصيل الزراعية تقسيم الأراضي و غنائم الحملات الحربية و المحاسبة للتمكن من الإتجار إلى جانب علم الملاحة بالنجوم في السفر و الترحال للتجارة و الاستكشاف و القياسات اللازمة لتشييد الأبنية و المدن.
و هكذا فإن البنى الرياضية التي يدرسها الرياضيون غالبا ما يعود أصلها إلى العلوم الطبيعية، و خاصة علم الطبيعة، ولكن الرياضيين يقومون بتعريف و دراسة بنى أخرى لأغراض رياضية بحتة، لأن هذه البنى قد توفر تعميما لحقول أخرى من الرياضيات مثلا، أو أن تكون عاملا مساعدا في حسابات معينة، و أخيرا فإن الرياضيين قد يدرسون حقولا معينة من الرياضيات لتحمسهم لها، معتبرين أن الرياضيات هي فن و ليس علما تطبيقيا.
//
تاريخ الرياضيات
مخطوطة مصرية قديمة لأحمس .
كان الكتبة البابليون منذ أكثر من 3000 عام يمارسون كتابة الأعداد وحساب الفوائد ولاسيما في الأعمال التجارية ببابل. وكانت الأعداد والعمليات الحسابية تدون فوق ألواح الصلصال بقلم من البوص المدبب. ثم توضع في الفرن لتجف. وكانوا يعرفون الجمع والضرب والطرح والقسمة. ولم يكونوا يستخدمون فيها النظام العشري المتبع حاليا مما زادها صعوبة حيث كانوا يتبعون النظام الستيني الذي يتكون من 60 رمزا للدلالة علي الأعداد من 1-60. وطور قدماء المصريين هذا النظام في مسح الأراضي بعد كل فيضان لتقدير الضرائب. كما كانوا يتبعون النظام العشري وهو العد بالآحاد والعشرات والمئات. لكنهم لم يعرفوا الصفر. لهذا كانوا يكتبون 600بوضع 6رموز يعبر كل رمز على 100.
بعض فروع قسم الرياضيات
تقسيم أولى لفروع الرياضيات
تنبيه هام: هذا التقسيم لا ينبع من تقويم علمى سليم و إنما ينبع من تهيؤ الكاتب الغير متخصص لما يمكن أن يكون عليه التقسيم، و لذلك تنبغي مراجعته و تصحيحه من قبل المتخصصين.
من الرياضيات البحتة
من الرياضيات التطبيقية
الإثبات الآلى للنظريات.
البحث المتوالى و المتوازي (parallel search) و فوز المباريات (gameplaying).
تصميم الدارات المنطقية (logic design).
علم المعلومات أو العلوم المعلوماتية.
علم إدارة نظم المعلومات.
علوم البرمجيات.
الاستمثال استمثال (optimization) تعرف فروع هذاالقسم بالبرمجة للإشارة إلى أن المراد هي إيجاد أدنى حلول للمعادلات تحت التحليل مثلا تحليل سيمبلكس (simplex analysis).
البرمجة الخطية (linear programming).
البرمجة الكاملة (integer programming).
البرمجة المتحركة (dynamic programming).
بحوث العمليات (operations research).
علوم الطبيعة الرياضياتية : و تشمل على فروع العلوم و النظريات الطبيعية التي تعتمد بالأساس في صياغتها على التحليل و البرهنة الرياضية أكثر من قياس التجارب و الظواهر الطبيعية و منها
نظرية الكم أو النظرية الكمومية أو علم الحركيات الكمية.
الميكانيكا أو الحركيات الإحصائية.
و منها أيضا دراسة حلول الدالات المجهولة في التصميم الهندسى و الصناعى و التى تعتمد على حساب المعادلات التفاضلية التى تصف النظم تحت التصميم.
ميكانيكا هاملتون.
التحليل العددي.
علم الشفرات (cryptography).
و لقد نشأت الرياضيات بقيام الإنسان بقياس ما يشاهده من ظواهر الطبيعة بناء على فطرة و خاصية في الإنسان ألا و هي اهتمامه بقياس كل ما حوله إلى جانب احتياجاته العملية فهكذا كان هناك ضرورة لقياس قسمة المقوتة (الطعام) بين أفراد العائلة و قياس الوقت و الفصول و المحاصيل الزراعية تقسيم الأراضي و غنائم الحملات الحربية و المحاسبة للتمكن من الإتجار إلى جانب علم الملاحة بالنجوم في السفر و الترحال للتجارة و الاستكشاف و القياسات اللازمة لتشييد الأبنية و المدن.
و هكذا فإن البنى الرياضية التي يدرسها الرياضيون غالبا ما يعود أصلها إلى العلوم الطبيعية، و خاصة علم الطبيعة، ولكن الرياضيين يقومون بتعريف و دراسة بنى أخرى لأغراض رياضية بحتة، لأن هذه البنى قد توفر تعميما لحقول أخرى من الرياضيات مثلا، أو أن تكون عاملا مساعدا في حسابات معينة، و أخيرا فإن الرياضيين قد يدرسون حقولا معينة من الرياضيات لتحمسهم لها، معتبرين أن الرياضيات هي فن و ليس علما تطبيقيا.
//
تاريخ الرياضيات
مخطوطة مصرية قديمة لأحمس .
كان الكتبة البابليون منذ أكثر من 3000 عام يمارسون كتابة الأعداد وحساب الفوائد ولاسيما في الأعمال التجارية ببابل. وكانت الأعداد والعمليات الحسابية تدون فوق ألواح الصلصال بقلم من البوص المدبب. ثم توضع في الفرن لتجف. وكانوا يعرفون الجمع والضرب والطرح والقسمة. ولم يكونوا يستخدمون فيها النظام العشري المتبع حاليا مما زادها صعوبة حيث كانوا يتبعون النظام الستيني الذي يتكون من 60 رمزا للدلالة علي الأعداد من 1-60. وطور قدماء المصريين هذا النظام في مسح الأراضي بعد كل فيضان لتقدير الضرائب. كما كانوا يتبعون النظام العشري وهو العد بالآحاد والعشرات والمئات. لكنهم لم يعرفوا الصفر. لهذا كانوا يكتبون 600بوضع 6رموز يعبر كل رمز على 100.
بعض فروع قسم الرياضيات
تقسيم أولى لفروع الرياضيات
تنبيه هام: هذا التقسيم لا ينبع من تقويم علمى سليم و إنما ينبع من تهيؤ الكاتب الغير متخصص لما يمكن أن يكون عليه التقسيم، و لذلك تنبغي مراجعته و تصحيحه من قبل المتخصصين.
من الرياضيات البحتة
- من فروع المنطق :
- المنطق المجرد.
- الجبر المنطقي (boolean logic) أو الجبر البولياني و ينبع منه
- منطق القضايا (propositional calculus).
- منطق الرتبة الأولى (first order logic) يحتوى هذا الفرع على القواعد و الأصول اللازمة لصياغة نظريات الذكاء الاصطناعي و هو يعتمد بدوره على مبادئ المنطق البولياني و منطق القضايا.
- المنطق الوقتي (temporal logic).
- المنطق الضبابي.
- نظرية الاعتقاد (belief theory).
- المنطق القافي (Q logic).
- من فروع الرياضيات المتقطعة:
- اللغات الشكلية و نظرية الآليات (formal languages & automata theory)
- نظرية المخططات (graph theory) و هى دراسة نظم ذات بنية شبكية و تتضمن على دراسة الشبكات و عبور المخططات و الشجر و أطياف المخططات و غير ذلك.
- نظرية المجموعات المبسطة.
- نظرية الأعداد.
- من فروع الجبر:
- جبر الأعداد الحقيقية (الجبر و المقابلة للخوارزمي).
- الجبر المجرد (يشتمل على القواعد المنطقية لحساب مختلف مجموعات الأعداد مثل حساب الأعداد الحقيقية و المركبة إلخ)
- نظرية الزمر.
- حساب المجموعات (الفئات).
- حساب المتتاليات.
- حساب المتجهات.
- الجبر الخطي.
- حساب المصفوفات.
- جبر بول (boolean algebra)
- ما وراء الرياضيات (metamathematics): و يشتمل ذلك على سبيل المثال على نظرية جودل و بحوث هيلبرت و برتراند راسل حول تعريف و تبويب بنية الرياضات بأجمعها.
- من فروع الهندسة:
- الهندسة الإقليدية.
- الهندسة الفراغية.
- الهندسة الإسقاطية.
- حساب المثلثات.
- الهندسة التحليلية.
- الهندسة الجبرية.
- الهندسة التفاضلية.
- الهندسة التضاريسية.
- الهندسة التضاريسية لمجاميع النقاط (point-set topology).
- الهندسة التضاريسية الجبرية (algebraic topology).
- نظرية العقد (knot theory).
- من فروع التحليل:
- الحساب المتناهي (حساب الـتفاضل و الـتكامل).
- المعادلات التفاضلية و المعادلات التكاملية.
- تحليل الأعداد الحقيقية.
- التحليل العددي (numeric analysis).
- التحليل التوافقي.
- التحليل الدالي.
- نظرية الدالات أو تحليل الدالات المركبة (function theory).
- التحليل اللا-قياسي (non-standard analysis).
- نظرية القياس (measure theory).
من الرياضيات التطبيقية
- نظرية الألعاب و لها تطبيقات في الإقتصاد و علوم الإدارة و التخطيط.
- علم الاحتمالات والإحصائيات.
- علم النظم (system theory)
- نظرية الشواش و النظم اللا- خطية .
- نظرية التحكم الآلي.
- علوم الحاسبات الآلية:
- نظرية الحوسبة.
- تحليل الخوارزميات.
- الذكاء الاصطناعي.
- التعلم الآلى و يشتمل على
- نظريات التعلم التواصلى (connectionist) و الشبكات العصبية أو العصبونية.
- نظريات التعلم التطورى: البرمجة و الخوارزميات الوراثية و التطورية.